Amide vibrations are delocalized across the hydrophobic interface of a transmembrane helix dimer.

نویسندگان

  • Chong Fang
  • Alessandro Senes
  • Lidia Cristian
  • William F DeGrado
  • Robin M Hochstrasser
چکیده

The tertiary interactions between amide-I vibrators on the separate helices of transmembrane helix dimers were probed by ultrafast 2D vibrational photon echo spectroscopy. The 2D IR approach proves to be a useful structural method for the study of membrane-bound structures. The 27-residue human erythrocyte protein Glycophorin A transmembrane peptide sequence: KKITLIIFG(79)VMAGVIGTILLISWG(94)IKK was labeled at G(79) and G(94) with (13)C=(16)O or (13)C=(18)O. The isotopomers and their 50:50 mixtures formed helical dimers in SDS micelles whose 2D IR spectra showed components from homodimers when both helices had either (13)C=(16)O or (13)C=(18)O substitution and a heterodimer when one had (13)C=(16)O substitution and the other had (13)C=(18)O substitution. The cross-peaks in the pure heterodimer 2D IR difference spectrum and the splitting of the homodimer peaks in the linear IR spectrum show that the amide-I mode is delocalized across a pair of helices. The excitation exchange coupling in the range 4.3-6.3 cm(-1) arises from through-space interactions between amide units on different helices. The angle between the two Gly(79) amide-I transition dipoles, estimated at 103 degrees from linear IR spectroscopy and 110 degrees from 2D IR spectroscopy, combined with the coupling led to a structural picture of the hydrophobic interface that is remarkably consistent with results from NMR on helix dimers. The helix crossing angle in SDS is estimated at 45 degrees. Two-dimensional IR spectroscopy also sets limits on the range of geometrical parameters for the helix dimers from an analysis of the coupling constant distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implications of threonine hydrogen bonding in the glycophorin A transmembrane helix dimer.

The transmembrane helix of glycophorin A contains a seven-residue motif, LIxxGVxxGVxxT, that mediates protein dimerization. Threonine is the only polar amino acid in this motif with the potential to stabilize the dimer through hydrogen-bonding interactions. Polarized Fourier transform infrared spectroscopy is used to establish a robust protocol for incorporating glycophorin A transmembrane pept...

متن کامل

Structure-based prediction of the stability of transmembrane helix-helix interactions: the sequence dependence of glycophorin A dimerization.

The ability to predict the effects of point mutations on the interaction of alpha-helices within membranes would represent a significant step toward understanding the folding and stability of membrane proteins. We use structure-based empirical parameters representing steric clashes, favorable van der Waals interactions, and restrictions of side-chain rotamer freedom to explain the relative dime...

متن کامل

Environmental Effects on Glycophorin A Folding and Structure Examined through Molecular Simulations.

The human erythrocyte sialoglycoprotein glycophorin A (GpA) has been used extensively in experiment and simulations as a model of transmembrane helix-dimer formation, emphasizing the critical role of specific residue-residue interactions between helices in dimer stability. While the tertiary dimer structure is modulated by the hydrophobic lipid bilayer environment, we show that interactions of ...

متن کامل

Specificity in transmembrane helix-helix interactions can define a hierarchy of stability for sequence variants.

The folding, stability, and oligomerization of helical membrane proteins depend in part on a precise set of packing interactions between transmembrane helices. To understand the energetic principles of these helix-helix interactions, we have used alanine-scanning mutagenesis and sedimentation equilibrium analytical ultracentrifugation to quantitatively examine the sequence dependence of the gly...

متن کامل

Modeling the vibrational dynamics and nonlinear infrared spectra of coupled amide I and II modes in peptides.

The amide vibrational modes play an important role in energy transport and relaxation in polypeptides and proteins and provide us with spectral markers for structure and structural dynamics of these macromolecules. Here, we present a detailed model to describe the dynamic properties of the amide I and amide II modes and the resulting linear and nonlinear spectra. These two modes have large osci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 45  شماره 

صفحات  -

تاریخ انتشار 2006